Past Year JEE Questions

Questions

Quetion: 01

If the coefficients of r^{th} , $(r+1)^{th}$, and $(r+2)^{th}$ terms in the binomial expansion of $(1+y)^m$ are in A.P., then m and r satisfy the equation A. $m^2 - m(4r-1) + 4r^2 - 2 = 0$ B. $m^2 - m(4r+1) + 4r^2 + 2 = 0$ C. $m^2 - m(4r+1) + 4r^2 - 2 = 0$

D. $m^2 - m(4r - 1) + 4r^2 + 2 = 0$

Solutions

Solution: 01

Explanation

Let r = 2

: 2nd, 3rd and 4th terms are in AP.

2nd term = $T_2 = {}^mC_{1.y}$

Coefficient of $T_2 = {}^{m}C_1$

3rd term = $T_3 = {}^mC_2$. y^2

Coefficient of $T_3 = {}^mC_2$

4th term = $T_4 = {}^mC_3$. y^3

Coefficient of $T_2 = {}^mC_3$

$$\therefore 2.^{m}C_{2} = {}^{m}C_{1} + {}^{m}C_{3}$$

$$\Rightarrow 2. \frac{m(m-1)}{1.2} = \frac{m}{1} + \frac{m(m-1)(m-2)}{1.2.3}$$

$$\Rightarrow 6m^2 - 6m = 6m + m(m^2 - 3m + 2)$$

$$\Rightarrow 6m^2 - 6m = 6m + m^3 - 3m^2 + 2m$$

$$\Rightarrow$$
 6m - 6 = 6 + m² - 3m + 2

Now put r = 2 at each option and find answer.

In option C, $m^2 - m(4r + 1) + 4r^2 - 2 = 0$ putting r = 2 we get

 m^2 - 9m + 14 = 0. So Option C is correct.